DIAMOND, SCALES AND GCH DOWN TO R

JIN DU

ABSTRACT. Gitik and Rinot [3] proved assuming the existence of a su-
percompact that it is consistent to have a strong limit cardinal x of
countable cofinality such that 2" = k%, there is a very good scale at ,
and o fails along some reflecting stationary subset of ™ ncof(w). In this
paper, we force over Gitik and Rinot’s model but with a modification of
Gitik-Sharon [4] diagonal Prikry forcing to get this result for kK = N 2.

1. INTRODUCTION

In this paper, cf(a) is the cofinality of a, cof(«) is the class of ordinals
with cofinality o and cof(# «) is the class of ordinals with cofinality not .

Let VGS, denote the presence of a very good scale at k, BS, the pres-
ence of a bad scale at k, o, the presence of a square sequence at x, o} the
presence of a weak square sequence at x, AP, the Approachability Property
at k and SAPk the Stationary Approachability Property at k. SAP; was
defined by Rinot [6] while the rest were defined by Cummings, Foreman and
Magidor [2]. Recall that for a stationary set S c k™, og is the assertion
that there exists a sequence (A, : a € S) such that for every A < k™,
{aeS:Ana=A,} is stationary. We will also write GCH,, to mean that

2% = k™ and SCH, to mean if & is strong limit, then 2% = ™.

Shelah [8] showed that for uncountable A\, GCH) = ¢g for any station-
ary S < AT ncof(# cf()\)). Shelah [7] showed it is consistent to have GC H)
but —og with S < At n cof(cf()\)) a non-reflecting stationary set. Gitik
and Rinot [3] found a model for GCH,, + VGS, + —¢g, where & is strong
limit and S < & N cof(w) reflects stationarily often. They started with
a model with GCH and k supercompact, performed an Easton support it-
eration to add a stationary set S, < a*“*! and kill all possible diamond
sequences along S+“T! for each inaccessible o < k, performed another Eas-
ton support iteration to make 2% = a*“*! for each inaccessible @ < &, and
lastly forced with a supercompact Prikry poset to get GC'H,, and singular-
ize KT for 0 < n < w to have countable cofinality. Zeman [10], building
on work by Shelah [8], showed that when « is singular, GCH, + —og for
S c kt ncof(cf(k)) stationary and reflecting stationarily often implies —o*.
Below we summarize relevant results.
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For every singular cardinal k

Shelah) o, = 0¥ = AP, = —BS;,

Cummings-Foreman-Magidor) o,, = VGSy, but of = VGSy,
Rinot) of = SAP, but SAPR, = of

Gitik-Sharon) VGSy , #» AR,

Rinot) 2¢ = kT ASAP, = og along every reflecting stationary S ¢

—~~

o~ —
— — — — —
—~

—~

(6) (Gitik-Rinot) GCH AAPy, # ©g along every reflecting stationary set S <

Nw+1
(7) (Gitik-Rinot) 2% = k™ AV GS, = og along every reflecting stationary set S ¢
+
K

In this paper, motivated by [1], [3] and [4], we obtain the following:

Theorem 1. Assuming the consistency of a supercompact, there is a model
where N, 2 is strong limit and GC’HNW2 + VGSNWQ + = og —l—BSNwQ, where
S c V2,1 N cof(w) reflects stationarily often.

Both the failure of diamond along S and the prescence of the bad scale

imply ﬁD;’}wQ in this model.

In the notation of [3,§1], let Q(A") := S(AT) « KAD(S(A")), where S(AT) is
the poset to add a new stationary subset S < A" ncof(w) and KAD(S(A1))
is an iterated forcing to enumerate all possible diamond sequences on S and

force diamond to fail on all these sequences.

Our construction will proceed as follows. It is broadly similar to the con-
struction in Theorem 1.11 of [3], except we must modify the diagonal Prikry
forcing in the final step.

e Start with Vp = GCH, k supercompact.

e Step la: Force with (Q(a*“*!) : a < k, @ inaccessible) with Easton
support. For each o < r this adds a stationary S(a) c at¥*! n
cof(w) such that —og,_, while preserving supercompactness of k. Let
S = S(k). Call the resulting model V;.

e Step 1b Perform Laver preparation as in [5] to make x indestructibly
supercompact with respect to any further k-directed closed forcing.
Call the resulting model V.

e Step 2: Force with Add(x, xT**1). This makes 2% = x***! and S
remains stationary because of the x+¥“*!-chain condition. Since s
remains supercompact, S reflects stationarily often. Call the new
model V5.
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e Step 3: Force with a modified version of the diagonal Prikry poset
with interleaved collapses in [4]. This makes x into X 2, collapses ev-
ery K" to N2 and makes 282 = R > +1 while preserving stationarity
of S and —og.

Step la is already described in [3]. In V,,, the powerset function behaves
wildly below k, but later we will use measures which concentrate on inac-
cessible av < k such that 2¢ = a™“*!. In Section 2, we perform Step 2 to
obtain V5, our main ground model for the rest of the paper. In Section 3,
we carry out Step 3 to obtain our final model and show that S remains a
stationary set that reflects stationarily often. The reason we need to mod-
ify the diagonal Prikry poset here, unlike in [3], is that in [4] the ground
model is prepared to have 2¢ = x7“*2 which allows guiding generics for
the collapses to be constructed that make conditions with the same stem
compatible. Here, guiding generics need not exist, so we must modify the
poset to work without them. In Section 4, we show that the final model has
a very good scale and a bad scale. In Section 5, we show that ¢g continues
to fail in the final model.

2. PREPARING THE GROUND MODEL

Working in V7, take j; to be a xt“*!-supercompact embedding with criti-

cal point & and js to be a k¥ 2-supercompact embedding with critical point
k. Regard Add(k, s 1) as consisting of partial functions p : k™! xx — &
with |p| < x. Then a generic G for Add(k,xt**!) will add <+ -many
generic functions F, : k — &, which we may index so that either o < xT¥+1
or a < gTetl

Lemma 2. There are lifts of j1 to ji and jo to j5 both in Vo := V,~ [G] s0
that for every a < ¥+ there is fo : k — K such that jf fo(k) = a and for
every a < kT there is fo : k — K such that j3 fo (k) = a.

Proof. We will prove both claims simultaneously. Let j denote either j; or
joand 6 = kT¥FTLif j = j; and 6 = k9Tt + 1 if j = jo. By standard
arguments, let K’ be a generic for Add(j(k), j(x)T!) over V, such that
J7G ¢ K', F* : j(k) — j(x) be the generic functions added by K’ and
assume we have lifted j to V, [K'] so that j(F,) = Yoy

Lemma 3. There exists K generic for Add(j(k),j(k)Tt) over Vi such
that:

« Koj°G

o If¢ <k, a<d and{(j(a),&) € dom(p) for some p € K, then there is

p' € K’ such that (j(), &) € dom(p') and p((j(), &) = p'((i(@), )
o Whenever (j(a), k) € dom(p) and p € K, p({j(a),k)) = «

Proof. Define pe K <—
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o If (j(@), k) € dom(p), then p((j(a),x)) = a

o p|(dom(p)\{{j(e), k) : < 6}) € K.
Since |p| < & for every p € G, j(p) = j7p. But & ¢ im(j). So (j(a),k) ¢
dom(j(p)), which implies 7°G n K = j°G n K'. Since j7G ¢ K’, we have
477G c K. To show K is generic, let A ¢ Add(j(x),j(k1“1)) be a max-
imal antichain. Let ¢ = {(j(a),k) = a : a < §}. Then |q| = xToH!
and hence ¢ € Add(j(k),j(k)**1). For each p € Add(j(k),j(x)T+1), let
ch(p) = (p|dom(p)\dom(q)) u (g|dom(p) N dom(g)).

Let A" = {p € Add(j(x),j(k)"™"1) : ch(p) € A}. Suppose p1,ps € A’
are distinct. If ch(py) = ch(pz), then py, po are the same outside dom(q) and
have the same domain on dom(q). So p1({j(), k)) # p2({j{a), k)) for some
a, which implies p; L po. If ch(p1) # ch(pz), then since A is an antichain,
ch(p1) L ch(pz). This incompatibility must be witnessed by some input
outside dom(q), which will also witness that p; L py. Therefore, A" is an
antichain.

Now suppose p’' € Add(j(k),j(x)T*"1) is incompatible with every element
of A’. Define p = (p'|dom(p’)\dom(q)) U q. Let r € A be compatible
with p. Then 7({(j(a),k)) = « whenever {(j(a),k) € dom(r). Define 7’
with dom(r’) = dom(r) by r'({j(), k)) = p'({j(a), k)) whenever {j(a), k) €
dom(r) and r'|dom(r)\dom(q) = r|dom(r)\dom(q). Then ch(r’) =r € A, so
r’ € A'. Furthermore, 1’ £ p’ because r £ p, v’ is compatible with r outside
dom(q) and p’ is compatible with p outside dom(g). But this is a contra-
diction because p’ is incompatible with every element of A’. Therefore, p is
incompatible with every element of A, which contradicts maximality of A.
It follows that A’ must be a maximal antichain.

Since K’ is generic, let p € A’ n K'. Then ch(p) € A n K. Tt follows
that K is generic. ([

Let j* be such that j*(F,)(§) = p({j(a),&)) for any p € K with (j(a),&) €
dom(p). This completes the proof of Lemma 2. O

3. THE MAIN FORCING

Let Ji, Jo be given by Lemma 2 and U, U their corresponding ultrafilters
on P(kt@T1) and P.(k"**2) respectively. From now on, we will write j;
in place of Jy and j in place of J;. Also, let U,, be the projection of U on
to P.(k*™) with corresponding elementary embedding j, : Vo — M,. For
convenience, we will write x, for K N x and when x € P, (k*%),y € P(x"7)
with i < j, then < y means x < y and ot(z) < Ky.

We define in V5 another forcing poset P that will collapse every «™" to
x and make x into R 2. Conditions will be of the form
<d) L0y COy +vvy Tn—1,Cn—1, Anu Cna A’I’Hrla Cn+1, >a where
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d € Col(w1, < Kgy) if n >0 and d € Col(wy, < k) if n =0

ZT; € Pn(/{+i), Ti < Tit1

ci € Col(kf¥ "2, < kg,,,) for i <n—1and ¢p_1 € Col(k}¥12 < k)
A; € U; and x, 1 < y whenever y € A4;

C; is a function with domain A; and for every =z € A;, Ci(z) €
Col(kf¥*2, < k), i.e. [Ci]y, € ColMi(ktH2 < ji(k))

We will also require that each x; is such that x n x; is inaccessible. Note
that this happens on a set of U;-measure 1.

For any condition p = {(d, xg, co, ..., Tn—1, cn—1, An, Ch, ...), denote stem(p) =
{d, 0,0y oy Tn—1,cn—1) and length(p) = n.

Given p = (dP,ab, b, ....ab | b | AL Ch, ...y and
_ q 4 q q a g :
q={d% zg,c, ... Ty 1, €1, AR, Cn, ..., define p < ¢ if

e m<n

o P < 4

oxfzx?andcf§c?fori<m
0xfeAgandcf<Ciq($f)form§i<n

o AP ¢ A? and C¥(z) < C}(x) for x € AV fori = n

Define p <* ¢ if p < ¢ A length(p) = length(q).

For stems h = {d,zg, o, ..., Tn—1,Cn-1y and b’ = {d',xf, ¢}y, ..., @l _1, 1)
of the same length, define h < A’ if d < d', z; = 2 and ¢; < ¢ for i < n.
If p = {d,x0,¢0y ey Tn—1,n—1,An,Cpy...), z; € A; for n < i < n+ k and
x; < xiq1 for n < i < n+k,let p"{(zy,...,nrry be the weakest extension
of p by (X, .oy Tyt i.€.

<d) Lo, €0y -y Tn—15Cn—1, Tn, Cn(xn)a ooy Ttk Cn-l—k(xn-i-k)v Aptk+1 Cntks,s >

P adds two new generic sequences of interest: A Prikry sequence {x, : n <
w), and a sequence of collapse generics (¢, : n < w). Let k, = kN x,. Then
{(kpn : n < w)y singularizes k to have countable cofinality while {¢,, : n < w)

collapses all cardinals in (k}“%2 k,41) to kF“+2 for every n.

From now on let G be a generic for P and V3 = V5[G]. In V3, all cardi-
nals from & to (k*“)"2 have cofinality w and x becomes R, 2. We will show
later that (k*“*1)"2 is the new successor of k.

P satisfies a property characteristic of Prikry type forcings.

Lemma 4. Prikry Property For any formula ¢(v1,...,vn), parameters
ai,...,am € V3 and any condition p € P, there is a condition v <* p such
that v I+ @(dy, ..., am) or r - —@(dy, ..., am).

Proof. For convenience, we write ¢ instead of ¢(dy, ..., am).



6 JIN DU

Claim 5. Let k > 0. Then for every r € P, if n = length(r) and A =
{(xn,...;Tnr) @i € AL, xj < xTj11}, then there is ' <* r such that for all
Te A, if ¢ <*r'"T and q||p, then r'*Z||p.

Proof. First consider the case k = 0. Let (z, : @ < k1™) enumerate A’.
We inductively construct a sequence (g, : @ < k™) as follows: If there is
q <* r*x, such that g||¢, choose one and call it g,. If not, let g, = r"z,.
During the construction, maintain inductively that for each ¢ > n, {{C{*|y,)
is decreasing by strengthening the ¢, if necessary; we can do this because
ColMi (579%2 < ji(k)) is closed under x*-sequences. Let ¢, = ¢, where
is such that z = z,.

We now define ' <* r as follows:

o [Col(wi, < Kay)|, [Col(kF¥ T2, < kg, , )| < K for i <n—1. So there is
A’ e Uy, A’ c Al such that on A’, z +— d% and z — ¢}* fori <n—1
are constant. Let d" c{’ be those constants.

oz — cI" | € Col(kf“"2 < k;), which can be coded as a subset of
Kz. S0 cgf_l can be coded as a bounded subset of k,. By Fodor’s
Lemma, there is A” € U,, A" < A7 such that z — ¢! | is constant.
Let ¢, be that constant.

o Let A7 = A"~ A

e For ze A7 let C7'(z) =

e For i > n, we can find a lower bound [b;]y, € ColMi(k+¥+2 < ji(k))
for ([C# ]y, : € A, where b; has the full domain P,(k%%). Let
B? = {y € P.(k™) : bi(y) < C¥(y)} and B; = Ayea, B¥. Also let
Bl = Agea, A¥. Take AT = AT A A A" A B; n Bl

o Fori>mn,let CI = b;|AL.

For all z € A", 7' <* q,. So ' is as desired.

Now assume the claim holds for some k. Let A = {{(xpn, ..., Tpiki1) :
x; € Al,x; < xj1} and for each x € A}, Ay = {{Tns1,-r Trghyr)
Ty Tpt1y s Tnyk+1y € A}, Apply the induction hypothesis to each r"z
and A, to obtain ¢, <* r”"z such that for all ¥ € A, if ¢ <* ¢, and q||¢,
then g, "Z||p. As before, do this inductively, maintaining that {[C{*]y,) is
decreasing (with respect to some well-ordering of A7) for i > n. We then
use the same argument as in the &k = 0 case to find ' <* r such that for
any z € A7, 'z <* q,. If now 2”7 € A and ¢ <* 7" z" T with ¢||p, then
q <* ¢} %. So ¢} Z||¢ and hence 'z F||p as desired. O

Let n = length(p). Using the claim, inductively construct (py : k < w)
a <*-decreasing sequence with pg = p such that for all £ > 1, if ¥ =
Ty ooy Tpgky € AR x o x APR L with @, < 2441 and ¢ <* ppZ, then
qlle = ppZ||¢. Let r be the weakest lower bound for (py : 1 <k < w).

Let Z = {{&n, ..., Tntr) : (VR < i < ntk)z; < ziq1, (Vn <@ <ntk)z; € Al}
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and F': Z — 3 be given by

0 r"ZIFg
F(@) =<1 rZI—p

2 otherwise
By standard results, there is (H; : ¢ > n) with H; € U;, H; < A] such
that for each k > n, F|{{xp,...,xn4ky € Z : x; € H;} is constant. Let 7’
be obtained from r by intersecting it’s measure one sets with the H;, i.e.
stem(r') = stem(r), A7 = AT n H; and CF = CI|A} ~ H; for i = n. We
claim that 7’ is as desired.

Suppose ' does not decide ¢. Then there are qg, ¢ < ' such that ¢o I ¢ and

q1 IF —¢. Without loss of generality, assume length(qo) = length(q;) = n+k,

where k > ql. Then qo <* pp{ai’, ...z}, ,). By the claim just proven,
0

pplad, o Tl ) 1= . By the same argument, pi i, ,x;ﬂrk> I —p. But

this contradicts F|{Z : |Z] = k} being constant. So '||e. O

A similar argument establishes the following strengthening of the Prikry
Property. We omit the proof, but prove a useful corollary.

Lemma 6. If D c P is dense and p € P, there is ¢ <* p and n = length(p)
such that whenever r < q and length(r) =n, r € D.

(K+w+1)

Corollary 7. V2 remains a regqular cardinal after forcing with P.

Proof. P collapses (k7“)"2 to x and singularizes x, so it is enough to show
that there is no unbounded h : 7 — (kT2 in V3 with 7 < k.

Suppose not and let p I+ h — (kT“F1)V2 unbounded. For each o < 7, let
Do = {qg€P: (3B)q I h(e) = B} and note these are dense and downwards
closed. For convenience, let p_1 = p. Inductively construct a <*-decreasing
sequence (P, : @ < 7y and {(ny : n < 7y as follows:

e Given p,, apply Lemma 6 to p, and D, to obtain p,41 <* p, and
Nat1 as in the conclusion.

e If o is a limit ordinal, given pg for all § < «, let p’ be a <*-lower
bound for {pg : B < ). Apply Lemma 6 to p’ and D, to obtain p,
and n, as in the conclusion.

Let g <* p, for all @ < 7. Then for any r < ¢, if length(r) = n,, r I+ ﬁ(a) =
Ba for some f,. Fix an arbitrary <-decreasing sequence {r, : n < w) € V3
below ¢ with length(ry,) = n. Let f(a) = 8 <= (In)r, I h(c) = 5. Then
f € Vy is a well-defined unbounded function from 7 to x*«*!. This is a
contradiction. O

Lemma 8. If (Y, : n < w) is a sequence of sets in Vo with Y, € U, for all
n, then x, € Y,, for all large enough n.
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Proof. Working in Vo, let D = {ge P: X}l ¢ Y, for n > length(q)}. This is
dense in IP, since any p € P can be strengthened by intersecting each X} with
Y,,. So we can find ¢ € G D that will force z,, € Y, for all n > length(q). O

Let D* = [], C;, where C; = [z — Col(k}**2, < k)]y,. This is exactly
ColMi(x9+2 < jii. (k). Let D = [, C;/finite, i.e. equivalence classes of
elements of D where two elements {[Co]v,, [C1]u,, --.) and {{C{luy, [Ciluys -y
are equivalent iff InVi > n [C;]y, = [C!]u,. Denote the equivalence class of
{[Colvy, [Ci]oys ) by {[Coluy, [Ciluys --) fin- Without risk of confusion, we
may omit a finite initial segment when writing this. Define ([Co]v,, [C1]u,, ) fin <
{Cuy, [Cuns - fim iff ANV > n [Cy]y, < [Cf]y,. This is clearly indepen-
dent of choice of representatives.

Lemma 9. P projects to D

Proof. Let m: P — D be 7({d, xo, co, ..., Tn—1, Cn—1, An, Cn, ...)) = {|Crnlv,: [Crs1lvnirs ) fin-
This is clearly order-preserving. Suppose p = {(xg, d, o, ..., Tn—1, Cn—1, An, Cn, ...)

and q < <[Cn]Un7[Cn+1]Un+17"'>fin' Let q = <[C’;L]Un7[C’;L+1]Un+17"'>fin'

Then Im [C!]y, < [Ci]uy, for all i = m. Fix such an m and assume without

loss of generality m > n. Then we can extend p to a condition p’ of length

m such that [CZPI]Ui = [C!]y, for i = m, and 7(p') = q. O

Taking projections of G, let R and Gr be the generics for D and P/R over
Vs respectively. Stems and direct extensions are defined in P/R just as in P.

Lemma 10. D is k1 + 1-strategically closed

Proof. Consider a game of length x**+1. We will inductively describe a win-
ning strategy for Player I. Let ag < k™ be an even ordinal and assume in-
ductively that VnVi = n(a < k™" = <[Cf v, : B < o, B even) is decreasing)
for every even o < ag. Let v be the least integer such that ag < x*?.

If g is a successor, this means <[CZB lu, : B < ap — 2,5 even) is decreasing
for all i > v. Suppose that Player I plays ([C5° ' ]up, [CT° i, o) fin
at stage ap — 1. Then [C* My, < [C2 2]y, for all i > w for some w.
Without loss of generality, assume w = wv. Then letting Player I play
LCE N0y, [C2N 1y ) fin, where [CX0y, = [C* ]y, for v < i < w and
[C)y, = [C My, for i > w continues the game while maintaining the
induction hypothesis. Each C; is x*%-closed. So if & < k™ and i > n, we
may take [C{]y, to be a lower bound for <[Cf]Ul : B < a). This maintains
the induction hypothesis.

If ap is a limit ordinal, this means <[C’Zﬁ lu, + B < ap, B even) is decreas-
ing for i > v. Since C; is k-closed, we can find [C{°] a lower bound for
(CPu, : B < ao, B even). Let Player I play {[CSuy, [C2]u,s ) fin at
stage ag. This condition is below the move at every earlier even stage, and
since «q is limit, it is below the move at every earlier odd stage too. So it



DIAMOND, SCALES AND GCH DOWN TO R 9

continues the game while maintaining the induction hypothesis.

At the final stage k7, let Player I play <[C§+M]UO, [CfW]Ul, ...)fin, Where
[C5™]y, is a lower bound for {[C®]y, : o < k7). This is a lower bound for
(C*: o < k1), where C* = {([C§vy, [C§]uy, ---) fin, because for any ap <
K if u is the least integer such that ag < k**, then [CF]y. < [C2]y,
for i > w. O

Lemma 11. D* preserves all Va-cardinals < k<1,

Proof. D* preserves all cardinals < k by closure. Let us first show that
D* preserves k™™ for every n. It suffices to show that each C; preserves
k*". This is obvious when i > n because C; is xk*'-closed, so assume
i < n. Note that M; = C; is k79 1-closed, and hence C; preserves (x™™)M:,
So if Mici collapses k", then (kt™)Mi % k™. Now j, = k o j;, where
k: M; — M, is given by k([flv,) = jnf(in" ). Furthermore j = k; o j;,
where k; : M; — M is given by ki([f]v,) = jf(57x™) and the same
when i is replaced by n. For each o < k™1 Ei([x v folks)]v,) =
[z = jfa(i(K) 0 2)]u,(576") = jfali(k) A j76") = jfa(k) = a. So
crit(k;) = k*“T1. By the same argument, crit(k,) = x*“*!. We then must
also have crit(k) > kT*+1. So, if (k*")Mi % k™, then letting vy := (kT7)M;,
M; & v is a cardinal. But M,, = ~ is not a cardinal because M,, computes
cardinals < k™™ correctly. Let h : v — ™™ be a bijection in M,, for some
kT™ < ~. Then k~!(h) is a bijection from v to x*™ in M;, which is a
contradiction.

Since the limit of a sequence of cardinals is a cardinal, D* preserves k™%
as well.

For each n, crit(j,) = & and C, has size |j,(k)|"2 < &l = g™ <
(25)5™" = 98" = gHtw+l Qo any antichain has size < £t“*t2 and D*
preserves cardinals > k7“2, Since D* is countably closed, if D* collapses
k+T9+l it must collapse it to some cardinal < x*“. But then x*¥ would

also be collapsed, which we know is not the case. So D* must preserve
ﬁ+w+1_ O

Note that since D* preserves kTt and projects to D, x*“*! remains
cardinal in V3| R].

Lemma 12. P/R = {pe P: n(p) € R} has the k™ *'-chain condition.

Proof. In this proof, z,, and ¢, are the relevant terms in the generic se-
quences {x, : n < w)y and {¢, : n < w). Towards a contradiction, let
A= {py: v < kTT1} < P/R be an antichain of size k™!, By thinning
out A, we may assume every p, has the same length n. For any v < ket
AL has measure 1. Also, {p € P/R : V large enough n(Ah < A A Vz e
AR (Ch(z) < CH'(x)))} is dense. So we may find p € Gg such that for all
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large enough n, A < AL’ and Ch(z) < Ch(x) for every z € A}, and in
particular for = x,,. Let ny, > 7 be such that z,, € AP and ¢, o CF (2,,)
for all n > n,. Let I < k™ %1 be an unbounded set in V2[R][Gg] such that
Vyel, n, =N for some N.

For v € I, extend each p, to ¢, with length(g,) = N while keeping ¢,|[N,w) =
p|[NV,w). Since |I| = (kT 1)V2 while there are only (x*“)"2-many stems,
and V5[R][Gr] E |(kTTHY2] = kT A |(kT9)"2| = Kk, there are distinct
7,72 € I such that ¢1 := ¢y, and ¢2 := ¢,, have the same stem. Let
h = stem(q;) = stem(q2).

Working in V5[R], let D,, = {y : Ca" (y) £ Cn2(y)}. Then z, € D,, as
witnessed by c¢,. By genericity, D, must be measure 1 for large enough
n. Let N > N be such that D, € U, for n = N’. For n = N’, let
C,, be a common extension of Cy', C/? defined on AL n A2 n D,,. Then
q:=h™{xn, CM(xn) U CP(xp) : N <n < NY (AP ~ Al? n D,,C,, : N’ <
n < w) is a common extension. So ¢,, and ¢,, are compatible, which is a
contradiction. (]

We now show the first two properties of V3 promised in Theorem 1.

Lemma 13. V3 = R 2 is strong limit, GC’HNWZ.

Proof. We start with Vs k= & strong limit, 267" = xt“*1. By Lemmas 8 and
9, D adds no new subsets of ™ while preserving all cardinals < kT*1. So
V5[R] & & strong limit, 257 = @+l

To show X2 is strong limit, since (k, : n < w) is cofinal in N2, it suffices
to show that V3 = 2% < R_». P/R adds generics for Col(k,/“2 < Kk, 41); s0

by standard results V3 = grn T Kkn+1. Hence V3 = 257 < K1 < N2.

To show GCHy ,, we use the following standard result on powersets in
generic extensions.

Fact 14. Let P € V have size AT and the AT -chain condition and G be
generic for P over V. Suppose X is collapsed to r while (\T)V = (rT)VIC],
Then V[G] E 28 < (AT

For conditions p = {(d, xg, co, ..., Tn—1,Cn—1, An,Ch,...» € P/R, there are
< k-many values for d, < x™-many values for z;, < x-many values for ¢;,
< k@ Tlmany values for 4; and < k™ Tlmany values for C;. So P/R
has size kT“*1. By the fact just proved, Vz = 2¢ < ((xToth)s™)V2lil =
(ktetValE] Hence V3 | 2802 = N 2. . O

Lemma 15. S is stationary and reflects stationarily often in V3

Proof. First note that D preserves stationarity of S because it is k% + 1-
strategically closed, and by a standard result, w + 1-strategically closed
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forcings preserve stationarity of sets with points of countable cofinality.

By Lemma 12, because of the chain condition, passing from V3> to V3 pre-
serves stationary subsets of kt“*!1. So S remains stationary in V3.

Let T € V5 be the set of reflection points of S. We first show that 7" is station-
ary in V. Suppose not and let C' < xt“*! be a club in V5 disjoint from 7.
Then S does not reflect at any point of C'. By elementarity, j(.5) does not re-
flect at any point of j(C). Now C* = {z € P,(k™™1) : supz € C} is a club,
hence C* € U and Vyz supz € C. Since p = sup j”xk T+ = [z — supz]y,
by Los’ Theorem we have p € j(C). So j(S) n p cannot be stationary. On
the other hand, let B c p be a club. Then B’ = {a < k : j(«) € B} is a
< k-club. Let B’ = B' U {a < k : a is a limit point of B'}. This is a club,
solet 6 € B'n S. Since S < cof(w), § € B'n S. Then j(§) € B n j(S),
showing that j(S) n p is stationary. This is a contradiction. Therefore T
must be stationary in V5.

Note that x remains supercompact in V" because Add(k, k1) = D* is
r-directed closed and S remains stationary in Vp>" because D* is w + 1
strategically closed and S < cof(w). Since the previous paragraph only
used the supercompactness of k£ and the fact that S is stationary in V5,
T*={a : S N «a stationary in V;>*} must also be stationary. But reflection
at « is downwards absolute, hence T* < T. So T must be stationary in
V2[R] as well. Since P/R has the k™ *1-chain condition, T is stationary in
V.

It remains to show that stationarily many points of T' remain reflection
points of S in V5. It suffices to do this for all reflection points of any pre-
scribed uncountable cofinality; but we will do it for many such cofinalties.
Passing from V5 to V2| R] preserves all reflection points because D is k% +1-
strategically closed, and so no new bounded subsets of k are added. Let «
be a reflection point in V5[R] and 7 = cf(«).

Lemma 16. If T € (kn, k,“"2) for some n, T is reqular in V3 and V3 | A <
ON, ot(A) = 7, then AB € Vi such that B < A is unbounded. In particular,

if ¢f3(T) € (K, k19T2), then ¢f2 (1) = cf2(7).

Proof. Let p € P be such that p I+ h:r — Ais increasing and cofinal.
Without loss of generality length(p) > n. For each f < 7, let Dg =

{¢ 3y € Aq - h(B) = 7}. By Lemma 6, we can find ps <* p and

ng such that Vg < pg with length(q) = ng, ¢ € Dg. Using the notation
B

pg = <df3,xg,cg, ...,xi_l,cm_l,A%,Cﬁ, ...y, We may assume we have con-

structed the pg inductively so that A7 ¢ A7 for 8>~ and ([C7)y, =i < 7

is decreasing; we can do this because C; is /QJT/[“_”’Q—closed, which is larger than
k2

7. Our goal will be to find an unbounded I < 7 and p’ € P a lower bound
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for (pg : B € I). We will do this coordinate by coordinate. This is already
the case with the x; coordinates, so we need only focus on the d coordinate
and the ¢; coordinates.

+w+2
) 9

+w+2

+w+2
i i

Since ¢; € Col(k , < Kit+1), which is & closed, whenever 7 < k
i.e. n < i, we can take the ciﬁ decreasing and then find a lower bound.
Now consider those i < n. For each (d,cq,...cn1) € Col{wr,< ko) X
[T COlri 2, < Kinn), et Ay, en sy = 18 < 7:d° = d,Vi(c] = ¢;)}.
This is a partition of 7 into |Col(wi, < ko) x [[;-,, Col(k;“ 2, < Ky, )| =
Kn < T pieces. Since T is regular, there is some (d, ¢, ...,cp—1) such that
I = Ac,...cp_y) 18 unbounded. (dP : B eI)and <cf : B € I) are constant

sequences, so a lower bound is just those constants.

Now let p’ be a lower bound for (pg : 8 € I) using again the closure of
the C;. By further shrinking I, we may assume that ng = k for some con-
stant k on I. Let ¢ < p’ with length(q) = k. Then ¢ decides the value of
h(B) for every B € I. Letting B = {y : 38 € I(q IF h(8) = 7)}, we get the
desired unbounded subset in V5. O

Suppose 7 = cf(a) is as in the lemma just proved. If « is no longer a
reflection point in V3, let {o; : i < 7) enumerate a club with suprenum « in
Vao[R] and C' < a be a club in V3 such that SnanC = . Let A= {i < 7:
«; € C}. Then A is unbounded; so by the claim there is unbounded A’ ¢ A
in Vo < V5[R]. But then letting C’ be the closure of {«; : i € A’} gives a
club in V5[ R] disjoint from S m «, which is a contradiction. So « remains a
reflection point in V3. O

4. A VERY GOOD SCALE AND A BAD SCALE

We will now show that there is a very good scale and a bad scale in V3,
as promised in Theorem 1. Throughout this section, we will write f <* ¢
for scales f and g to mean that g eventually dominates f.

Motivated by arguments in [1], we first prove a Bounding Lemma.

Lemma 17. Bounding Lemma

Let {n(n) : n < w) be a sequence of ordinals such that n < n(n) < w. Then

for anytel], /17{77(”)“, there is a sequence (B, : n < w) € V4 with B, an

ordinal-valued function on Py(k*™) such that on a U,-measure one set of x,

+n{n)+1

B, (x) < ka and for all large enough n, t(n) < By(x,).

Proof. Let p It € 11, KT+ For n > m = length(p) and conditions ¢
of length > n, write g||t(n) to mean q - £(n) = B for some B < Kya. Our
goal will be to define B,, and a condition p" with stem(p"™) = stem(p) such
that p" I t(n) < By (). We will first define for each € P,(k*") a suitable
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p

upper part u, = {(x, ¢,y (AL Ot 5. We may assume 27, | < x since

this happens for U,,-almost all z whenever n = m.

Fix z. Let S, be the set of all stems h of length n extending stem(p) such
that h"(xz, Ch(z)) is also a stem. Since for every k < n and y € P.(x*F),
TR Ay = k%, then for Uy-almost all 2 we have |[{y : y < 2}| < |P., (x*"

z)| < |kT AT = (k)M = k1™ Then |Sy| < k7™ So let {(hy, By) -
v < ﬁ;n(n)+1> be an enumeration of {¢h,5) : he Sy, 8 < I€+n(n)+l} Apply-
ing the Prikry Property to the condition h.,"(xz, Ch{z)) (AY ,,C? |, ...) and
the sentence £(n) = /3, we get a condition p,, = B (e Y (AN Oy )
with hl <* hy, ¢ < Ch(z) and p,||i(n) = By. Since Col(kf“*2 < k) is
rF¥+2-closed, choose the p, inductively so that (¢’ : v < #y n(n)H} is de-
creasing and let ¢, be a lower bound. Inductively, define for £k > n + 1,
A7 =1, A7, Since Col(kf“*2 < k) is k“T2-closed, we can take the
CP(y) : v < ﬁ;n(n)H) to be decreasing for each y € A7. Define C} =

U’y C,Z,\/ a‘nd u$ - <‘T7 Cx>A<A7zl+17 CZ+1, >

With z now allowed to vary, let p" = p|n" (AL Cﬁn, s Where
pln = <d€,x€, cg, ...,xfnfl,cfnfl,Afn, Ch, ...
Al = A
e Ch (z)=c,
AV = Axep (et AL for k> n
C’p = U,<, C (y) on a measure 1 subset of Agn
Define Bn( ) = sup{B : Ig(length(q) = n + 1,q|[n,w) = us,q I+ t(n) =

B)} + 1. There are < k™ choices for ¢ in the definition of B, (x). Since the

B corresponding to each ¢ is below H+n(n)+1 B,(x) < K;n(n)ﬂ_ It remains

to show that p" I t(n) < By,(i,) for all 1arge enough n. Let g < p™ have
length n+1. Then g is of the form h"(x, c>Aq| [n+1,w). By the construction

above, there is p, <* h"(z, cn”> (AP, CP ., ..ysuch that py I £(n) = B for
some (. Since py|n"uz < py, DyIn Uy - t(n) = . It follows that 8 < B, (z).

n 1’ 1>

Let b/ = py|n <* hand ¢’ = h'"(z,¢)"q|[n + 1,w). Then ¢’ < ¢ because ¢ <
¢, and stem(q’) <* stem(p,). We need to show ¢'|[n + 1,w) < py|[n + 1,w)

as well. Let k = n + 1. Then Azl c A ={z:z¢ Ny<:Ab}. If z € A7
then z < z,s0 z € Ak < Ap”’ Hence AZ c AZ”. Ifz€e AZ, then z € AZW and
Ol (2) < CV'(2) = Uy cy (2). But 2 < z, so CI (2) < C¥(z) < CP(2),
which shows C’g < C}7. Therefore, ¢’ < p,, which gives ¢ I £(n) = 8 and
¢ IFt(n) < Bp(iy). By density of the ¢ below p”, p" I t(n) < By(dy).

Finally, observe that we could have constructed the p™ inductively so that
{(p" : n < w) is decreasing. Assume we have done so and let p* be a lower
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bound. Then p* |- t(n) < B, (i) for all n > m. Since the argument works
densely below p, we have the Bounding Lemma. O

Theorem 18. There is a very good scale (t, : o < k) € V3 for k.

Proof. Recall that k, := k n z, and in Section 2, we found f, : K — &K
for o < kTt such that jf,(k) = a. For each a < s, define in V3,
ta(n) = folkn) if folkn) < &+ and 0 otherwise. The proof that this is a
very good scale is as in [4]. O

Theorem 19. There is a bad scale {gg : < k™) € V3 for k.

Proof. Shelah [7] showed every scale above a supercompact cardinal is bad.
We include the proof of the following more specific result for completeness.

Lemma 20. Let V & k supercompact and {hg : f < +**1) be a scale in
[1,, s FL. Then there is inaccessible § < K such that there are stationarily
many bad points of cofinality 6+ +1.

Proof. Let us write h for (hg : B < KT Towards a contradiction, as-
sume no such J exists. Then for every inaccessible § < k, there is a club
Cs < k+t9*! such that every 8 € Cs with cf(3) = 6+“*! is a good point for
h. Let C = ;5. This is still a club.

Suspending the previous definitions of V, M and U for the rest of this lemma,
let j : V — M be a xt“*l-supercompact embedding with corresponding
normal measure U and p = supj”(kT*1). Then p = [z — supz|y and
Jj(C) = |z — CJy. Since supx € C for U-almost all (in fact for club many)
x, M E p e j(C). Now V E VBV inacc (B € C A cf(f) = 679 =
3 is a good point for h. So M = VA6 inace (8 € j(C) A cf(3) = 6T@+! =
3 is a good point for j(h). Since k is inaccessible in M and cf(p) = k@1,
p is a good point for j(ﬁ)

Working in M, define f(n) = sup(j”x*"*!). We will show f is an eub
for (j(h)g : B < p). Given B < p, let v < k7! be such that j(y) >
B. Then j(h)s <* j(h)jy) = j(hy). Since hy(n) < &1, j(hy)(n) <
supj” (k") = f(n), we have j(h)s <* f. So f is an upper bound.
Now let h <* f, ie. h(n) < sup(j”x™"*!) for large enough n. Then
for n large enough, there are v, < x™"*! such that h(n) < j(v,). Let
h(n) = 4n. Since & is a scale, we can find 8 so that hs >* h. Then
j(hg) = j(h)js >* j(h) >* h. Hence f is exact. But cf(f(n)) = x¥"*1,
which is strictly increasing. Therefore, p is a bad point for j(k). This is a
contradiction. O

Working in Va, since k is supercompact, there is a bad scale (G : 8 <
kT on [T, 7! with stationarily many bad points. For each n and each
n < k*"*1 let F)] be a representative for n in Ult(Va, Uy,), i.e. [Exly, =1
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and for U,-almost all z, F;/(z) < ™!, Note that Ult(Va,U,) computes
kT7F1 correctly because it is closed under x*" sequences.

In V3, define {(gg : B < k™) by gg(n) = FnGB(n)(a:n), recalling that {(x,, :
n < w)y is the Prikry sequence added by P. Note that this is well-defined for
n large enough by Lemma 8 because <d0m(F7? s (n)) :n < w)y is a sequence
of measure 1 sets.

Subclaim 21. If o < 3, then go(n) < gg(n) for large enough n.

Proof. Since {Gg : B < 1%} is a scale, Go(n) < Gg(n) for large enough
n. So for large enough n, G (x) < F,LGB(H) () for Uy-almost all x. It

follows that g,(n) = Ffa(n)(:vn) < F,?ﬂ(n)(:vn) = gg(n) for large enough
n. ]

Subclaim 22. {gg: 8 < k") is a scale in [], k™!

Proof. We need to show that for any h e [ [, k"1 in V3, there is 3 such
that h(n) < gg(n) for large enough n. For this, we use the Bounding Lemma
with n(n) = n to get (B, : n € w) € V5 such that [B,]y, < "1 and for
large enough n, h(n) < By(zy). Since (Gg : B < kT@T1) is cofinal in
[T, x™™*L, let B be such that [By]y, < Gs(n) for large enough n. Then

[Bnlu, < [FnGﬁ(n)]Un, ie. By(z) < FnGﬂ(n)(x) for Up-almost all z. It follows
that h(n) < Bp(x,) < F,?ﬁ(n) (zn) = gs(n) for large enough n. O

Lemma 23. Let a be a bad point of (G : B < kTt with cf(a) €
K+w+2

(K, K“T2) for some n. Then « is a bad point of (g3 : < k™).

Proof. We will show the contrapositive. By Lemma 16, we know that for
any such a, cf"3(a) = c¢f*?(a) so that in particular, w < cf'2(a) < k. Let
unbounded A < « and m witness that « is a good point of {gg : B < k™),
ie. {gg(n): p € A) is strictly increasing for any fixed n > m. By Lemma
16, A has an unbounded subset in V5; so we may assume that A € V5.

Let p = {xg,co, ..., Tk—1, Ck—1, Ak, Ck, ...) be such that

pIFVYn = mVp < ' e A(gs(n) < gz (n)). Without loss of generality, assume
k = m. Then in particular, p |- V3 < ' € A(FkGB(k) (Tg) < FkGB’(k) (Z))-
Let B = A, n {z: V8 < 3 € AF® (@) < FC¥(2))}. We claim that
Be U Ifnot, B' = Ay n {z: =3 < f'e AFT* Py < F7 D ())1. we
can then take ¢ < p of the form ¢ = (xo,co, ..., xx—1, cx—1, B',C}, ...). Then
g I+ &, € B’, which is a contradiction because p I+ &) ¢ B’.

We now have V5 < ' € A(FkGﬁ(k)(:c) < FkGﬁ'(k)(:z)) for Ug-almost all z.
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But [F]y, = 8 So V8 < ' € A(Gs(k) < Gg(k)). Since this argument
works for any k > m, a is a good point of (Gg : 8 < k¥ F1). O

Let B € Vi be the set of bad points of (Gg : 8 < Ty This is
stationary. The goal is to show that if B’ € V3 is the set of bad points of
{gp : B < k™), then this is stationary as well.

Recall from Lemma 11 that D* preserves k™! and every "+, (Gj :
B < kT remains a scale in VQD* because being increasing under the even-
tual domination ordering is absolute, and it remains cofinal because D* is
k-closed hence adds no new w-sequences. Let B be its set of bad points.
Since x remains supercompact, by Lemma 20 there is inaccessible § such
that B n cof(6T**1!) is stationary. But B < B because being a bad point is
downwards absolute. So B n cof(67%+1) e VP* is stationary.

Since stationarity is downwards absolute, B n cof(§7**1) is stationary in
V2[R]. Since P/R has the x***!-chain condition, B n cof(§7“*!) remains
stationary in V3. Assume we have forced below a condition making kg = 9.
Then B’ > B n cof(§t¥*1) by Lemma 23. So B’ is stationary. O

5. THE FAILURE OF DIAMOND

We now prove that og fails in V3, as promised in Theorem 1.

Theorem 24. V3 = —og

The following lemma is a standard result due to Kunen.

Lemma 25. Let 7 be a cardinal, S < 77 be stationary and V |= —og. Then
for any generic G of a 7T -cc forcing P, V|G| E —og.

It follows that passing from Vi to V,~, Vi~ to V2 and V5[R] to V3 all
preserve —¢g. It remains to show that passing from Vs to Va[R] preserves
—0g.

Lemma 26. M does not have a ©g sequence.

Proof. Suppose M = (A, : a € S)isa og sequence. Then (A, : a €
SY € Va. Since M is closed under xT“*2-sequences, given A ¢ k¥ *1 in V5,
AeM. So{aeS:Ana=A,} is stationary in M. But every club subset
of kT in Vo isin M. So {a€ S: Ana = A,} is stationary in Vs, giving

us a ©g sequence in Vs, a contradiction. [l

Lemma 27. Let Q be a kT 2-closed forcing over M. Then Q does not add
og with respect to Va sets, i.e. there is no (Sq : @ € S) such that for every
Ac k™t in Vo, {a: Ana=5,} is stationary.

Proof. Note that subsets of k™! in M are the same as subsets of kT«+!
n Va.
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Suppose for contradiction S = (S, : a € S) is a ©g sequence with respect to

Vs, sets in M@ and let p € Q be such that p - Sisa ©g sequence with respect to V5 sets.
Since Q is xT¥*+2-distributive, each S, € M is such that for any A € M,
{a€eS:Ana=25,} is stationary. We will show that S € M. This will be

a contradiction because M = —og.

Inductively define (po : @ € S) decreasing so that py I S(a) = S,. Since
S| < kT9t2 there is a lower bound q¢. Then S = {(a, A) : a € S,q IF
S(a) = A} e M. O

Let C = [z — Col(k}“*? < r)]g = Col™ (kT¥*2 < jg(k)). By Lemma
27, MC does not have a og sequence. Let k, : M,, — M be given by
kn([flv.) = jof(ig”k™™). Then ji = kyn o jn. By the argument from
Lemma 11, crit(k,) > k71, Since S < x+**L k,(S) = S.

Lemma 28. M does not have a o5 sequence.

Proof. Suppose (A, : a € S) is a og sequence in MS" and h is a C, name
over M, for the function h(a) = A,. Let p € C,, be such that p |- his a g
sequence. Then &y, (p) I kn(h) is a og sequence. But this is a contradiction
because MC does not have a og sequence, and we could have forced below

e (p)- O
Lemma 29. Let G,, be generic for C,, over M,. Then there is G™ generic

for C over M and k; : My[G,] — M[G™] extending ky : M, — M such
that kX (71a,) = kn(T)cm) for every C,-name .

Proof. It is enough to find p € C such that p < k,(q) for every q € G,,. This
is possible because |G| < |C,| = k7! and C is k¥ 2-closed and because
crit(ky,) > koL, O

From now on, we use [[, G, as our generic for D* over V5 and H :
[1,, G™ as our generic for [], C over M.

Lemma 30. V2 does not have a ©g sequence with respect to Vo sets.

Proof. For any q € [ [, Cy, ¢ = {gn : n < w) with g, € C;,. Let g, = kn(qn) €
Cand g={Gn:n<wyel],C.

Let (A, : « € S) be a og sequence with respect to Vo in VI, h(a) = A,
and suppose p € [[,Cp, p E hisa og sequence with respect to V5 sets.
Without loss of generality, assume p, € G,,. Then p € H.

Let A* = {(B,0) : q IF B € Ay} a [1, C-name. Then whenever q |-
B € Aq, qg-pe A* Let h* be a 11, C-name for the sequence o >
A%, where A% = (A*)y. We will show that M I ¢ Ik “h* is a og
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sequence with respect to V5 sets”, contradicting Lemma 27.

Let A c kt9*! be a set in Vo. Then there is stationary T < S such that
for all @ € T there is ¢ < p still in [[, G, with g IF Ana = A,. Given
any 8 € A N «a, strengthening ¢ if necessary, we may assume ¢ I+ 3 € Aa,
hence ¢ I+ 5 € A; Since g € H, An a < A%. On the other hand sup-
pose B ¢ A n «. This is absolute across all models containing A, so we
may take ¢ < p still in [[, Gy so that ¢ IF 3 ¢ A,. We want to show
that g I+ 3 ¢ A; If not, then there is a generic filter H' containing ¢ such
that 8 € (A*)p = {8 : HB,7) € A*, 7 € H'}, so there is 7 € H' such that
(B,7ye A; By definition of A;, rI- B € A,. In particular, ¢ L 7. But ¢ £ 7
because they belong to the same filter, which means Vn(k,(qs) & kn(ry)).
By elementarity, Vn(q, £ r,), so ¢ £ r. This is a contradiction. It follows
that 5 ¢ A”.

Therefore, for every o € T, M[H] E A na = A*. But T remains sta-

— (6%
tionary in M[H] because of the chain condition. O

We are now ready to finish the proof of Theorem 24. If V5[ R] had a og se-
quence, this sequence would exist in V>* and guess every V[ R]-subset (and
in particular every Va-subset) of k7“1 stationarily often. This contradicts
Lemma 30.

We conclude with two problems that remain open:

(1) Can we get Theorem 1 for 8,7 Can we even get VGSy, + —oy 7
The same construction but with only finitely many cardinals between
successive terms x, and k,1 in the Prikry sequence would not work
because k¥ *! would no longer be a cardinal in V.

(2) Shelah asked whether it is possible to get GCH,, + —og, where S =
kT n cof(cf(k)). The larger S is, the more difficult it is to get —og;
so this would be the optimum result in the direction of enlarging S.
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